JACOBS UNIVERSITY BREMEN

Molekulargenetischer Schalter: Wissenschaftler deaktivieren gezielt Virus-DNA in menschlichen Genen

   

Albert Jeltsch, Professor für Biochemie an der International University Bremen (IUB), und seinen Mitarbeitern gelang es erstmals, zusammen mit Forschern des Institutes für Biochemie der Universität Giessen und des Medical Research Council der Cambridge University, gezielt Erbgut von Herpesviren in menschlichen Zelllinien zu deaktivieren. Hierzu verwendeten sie durch genetisches Design künstlich erzeugte Proteine, die Methylgruppen als Markermoleküle an Kontrollbereiche des DNA-Molküls anheften und so verhindern, dass die Erbinformation dieses Abschnitts aktiv werden kann. Die Studie ist in der aktuellen Ausgabe von Nucleic Acids Research (2006: doi:10.1093/nar/gkl1035) veröffentlicht.

[ Dec 06, 2006]  Das menschliche Erbgut enthält 20000-30000 Gene als Informationseinheiten. Diese werden im Verlauf der Entwicklung eines Menschen durch einen als „Genregulation“ bezeichneten Prozess gezielt aktiviert und deaktiviert. Eine zentrale Rolle kommt hierbei speziellen Proteinen, den DNA-Methyltransferasen, zu. Sie können Sequenzen von Genen im Erbgut erkennen und durch so genannte DNA-Methylierung, die Anlagerung von Methylgruppen als Markermolekülen an Schlüsselpositionen, das Ablesen der nachfolgenden Gensequenz und somit ihre Aktivierung verhindern. Methoden zum gezielten Ausschalten bestimmter Gene sind für die Entwicklung neuer Therapiemethoden von großem Interesse, weil viele Krankheiten, wie etwa Krebs, auf der Aktivierung bestimmter „Krankheits-Gene“ und Virusinfektionen auf der Aktivierung körperfremder Gene beruhen.

Der Forschergruppe um Albert Jeltsch ist es jetzt gelungen, durch genetisches Engineering aus katalytisch wirksamen Proteinbestandteilen DNA-Methyltransferasen und verschiedenen, die DNA zielgerichtet bindenden Proteinen künstliche Fusionsproteine zu erzeugen. Die Bausteine dieser Fuisonsproteine stammten aus Maus, Hefe oder sie wurden künstlich generiert. Die Fusionsproteine können hochspezifisch Ziel-DNA-Bereiche erkennen, sich dort anlagern und durch DNA-Methylierung deren Aktivierung unterdrücken. Diese nach dem Baukastensystem auf unterschiedliche DNA-Zielregionen programmierbaren Methyltransferasen konnten erstmals von den Wissenschaftlern erfolgreich eingesetzt werden. So konnte mit Hilfe eines modifizierten Methyltransferasetyps eine Infektion mit dem Herpes-Virus HSV-1 in einer Kultur menschlicher Zellen unterdrückt werden. Um die Vermehrung des Virus zu verhindern, die im menschlichen Körper eine Erkrankung hervorrufen würde, mussten die künstlichen Methyltransferasen in der Lage sein, nicht nur die Aktivierungsregion des viralen Gens zu erkennen, sondern auch erfolgreich zu methylieren und somit auszuschalten.

Die Biochemiker um Jeltsch überprüften ihre Ergebnisse, indem sie systematisch die Sequenz der Proteinbestandteile und den DNA-Zielbereich durch Austausch einzelner Bausteine des Proteins veränderten und so die Bedeutung einzelner Komponenten für die Funktionalität des Systems nachwiesen.

Albert Jeltsch zu der Studie: „Die meisten krankhaften Veränderungen im Körper könnten durch eine Hemmung einzelner kritischer Krankheitsgene bekämpft werden. Eine effiziente und risikofreie externe Kontrolle der Aktivität von einzelnen Genen in Körperzellen ist deshalb eine Vision, die unseren Umgang mit vielen Krankheiten grundlegend verändern würde.“ Die gewonnen Daten zeigten, dass die damit verbunden Probleme auf der Ebene des Protein-Designs gelöst werden können, kommentierte der IUB-Wissenschaftler den Forschungserfolg. „Zentrale Fragen für die zukünftige Forschung werden sein, zum einen möglichst viele Zellen im Körper für eine solche Behandlung zu erreichen, aber auch die Wirkung der künstlichen Fusionsproteine auf die Gewebstypen zu beschränken, in denen das Ziel-Gen tatsächlich abgeschaltet werden soll. Denn oft ist eine Hemmung eines Gens im ganzen Körper nicht wünschenswert, da es nicht in jedem Kontext an einem Krankheitsgeschehen beteiligt ist, sondern eine wichtige Funktion für den Organismus hat“, so Jeltsch.

Fragen zur Studie beantwortet:
Prof. Dr. Albert Jeltsch
Tel.: 0421 200-3247
E-Mail: a.jeltsch@iu-bremen.de

Jacobs University Bremen
Contact: Corporate Communications and Media Relations
Tel: 0421 200 4455
Fax: 0421 200 4453
http://www.jacobs-university.de

 


Author: Dr. Kristin Beck. Last updated on 15.04.2008. © 2008 Jacobs University Bremen, Campus Ring 1, 28759 Bremen. All rights reserved. No unauthorized reproduction. http://www.jacobs-university.de. For all general inquiries, please call the university at +49 421 200-40 or mail to info@jacobs-university.de.